Towards an optical in-line characterization of nano petals

نویسندگان

  • Yiming Ding
  • Huisung Kim
  • Euiwon Bae
چکیده

Carbon Nano Petals (i.e. CNPs) are cantilevered multilayer grapheme sheets that are seeded from core graphite fibers. The resulting structure offers a possibility of minimizing interfacial losses in transport application, improved interactions with surrounding matrix materials in composites, and a route toward substrate independence for device applications. The mass production of CNPs on the substrate required a method that can provide synchronous feedback on the sample status without pulling them out of the production line. Different optical properties can be observed when surfaces with different roughness are illuminated with a highly coherent light such as a laser beam. Similarly, CNPs in different growth periods should give distinguishable statistical feathers in their optical signatures, such as speckle size distribution, average speckle size, and speckle contrast. A prototype inline inspection system is developed which can inspect small area with a 45 degree interrogation light and capture speckle patterns at 90 & 135 degrees. Two different methods, Auto-correlation and Matlab digital image processing (DIP), are used to analyze the raw images in terms of average speckle size and speckle size distribution. It is found that saturated signal is only detected in the case of 135 degrees on the CNT sample without petals. As the distance between the camera and CCD increases, the average speckle size increases. Also, there is a positive correlation between the average speckle size and the wavelength. This prototype system is capable of providing real-time growth characteristics of CNPs from roll-to-roll production facilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

CuO-NiO Nano composites: Synthesis, Characterization, and Cytotoxicity ‎evaluation ‎

Objective(s): In this work, CuO- NiO nano-composites were synthesized via free-surfactant co-precipitation method and then their physiochemical properties, as well as cytotoxicity and antifungal effects, were studied. Methods: The structural and optical properties of CuO-NiO nanostructures were analyzed by X-ray diffraction (XRD), scanning electron micros...

متن کامل

Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. ...

متن کامل

Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method

In this research zinc oxide (ZnO) nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis), Fourier transform infra-red (FT-IR) and energy dispersive X-ray (EDX) spectroscopy. The structure of nanoparticles was studied using XRD pattern. The c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015